IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Sediment features, macrozoobenthic assemblages and trophic relationships (d13C and d15N analysis) following a dystrophic event with anoxia and sulphide development in the Santa Giusta lagoon (western Sardinia, Italy)
Magni, P.; Rajagopal, S.; van der Velde, G.; Fenzi, G.A.; Kassenberg, J.; Vizzini, S.; Mazzola, A.; Giordani, G. (2008). Sediment features, macrozoobenthic assemblages and trophic relationships (d13C and d15N analysis) following a dystrophic event with anoxia and sulphide development in the Santa Giusta lagoon (western Sardinia, Italy). Mar. Pollut. Bull. 57(1-5): 125-136. http://dx.doi.org/10.1016/j.marpolbul.2007.10.015
In: Marine Pollution Bulletin. Macmillan: London. ISSN 0025-326X; e-ISSN 1879-3363, more
Peer reviewed article  

Available in  Authors 

Keywords
    Chemical compounds > Sulphur compounds > Sulphides
    Food webs
    Isotopes
    Macrobenthos
    Organic matter > Carbon > Organic carbon
    Pollution
    Water bodies > Lagoons > Coastal lagoons
    Marine/Coastal
Author keywords
    stable isotopes; food webs; macrofauna; pollution impact; acid-volatilesulphides (AVS); total organic carbon (TOC); coastal lagoons

Authors  Top 
  • Magni, P., more
  • Rajagopal, S., more
  • van der Velde, G., more
  • Fenzi, G.A.
  • Kassenberg, J.
  • Vizzini, S.
  • Mazzola, A.
  • Giordani, G.

Abstract
    Macrozoobenthic assemblages and stable carbon (d13C) and nitrogen (d15N) isotope values of various primary producers (macroalgae and angiosperms) and consumers (macroinvertebrate filter/suspension feeders, deposit feeders, detritivores/omnivores and carnivores and fishes) were studied in the Santa Giusta lagoon (Sardinia, Italy) before (spring) and after (autumn) a dystrophic event which occurred in the summer of 2004. A few days after the dystrophy, the physico-chemical characteristics of sediments and macrozoobenthic assemblages were also investigated. In the latter occasion, high total organic carbon (3.9%) and organic matter (15.9%) contents of surface sediments went together with peaks in acid-volatile sulphide concentrations. Certain immediate effects were quite extreme, such as the drastic reduction in macrozoobenthos and the massive fish kill in August 2004. Among the macrozoobenthos, there were few individuals of chironomid larvae and Capitella cf. capitata left. However, by October, chironomid larvae were numerous, indicating a lack of predators (e.g. fish) and competitors. In addition, some bivalve species and polychaetes which were absent, or present in small numbers before the event, became relatively numerous. The results are discussed based on a knowledge of the sulphide tolerance of these species. Stable isotope analysis clearly showed that the basal level of the food web for most consumers consisted mainly of macroalgae and sedimentary organic matter, and that the values before and after the dystrophic event were not significantly different from one another. This indicates that the relations among different trophic levels were quickly restored following the dystrophic event.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors