IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Stable isotopes of oxygen and carbon compositions in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin): are cap carbonates and lithoherms recording a particular destabilization event after the Marinoan glaciation?
Préat, A.; Prian, J.-P.; Thieblemont, D.; Obame, R.M.; Delpomdor, F. (2011). Stable isotopes of oxygen and carbon compositions in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin): are cap carbonates and lithoherms recording a particular destabilization event after the Marinoan glaciation? J. Afr. Earth Sci. 60(4): 273-287. https://dx.doi.org/10.1016/j.jafrearsci.2011.03.005
In: Journal of African Earth Sciences. Elsevier: Oxford & Amsterdam. ISSN 1464-343X; e-ISSN 1879-1956, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Schisto-Calcaire Subgroup; Cap carbonates; Lithoherms; Marinoanglaciation; Stable isotopes; Gabon

Authors  Top 
  • Préat, A., more
  • Prian, J.-P.
  • Thieblemont, D.
  • Obame, R.M.
  • Delpomdor, F., more

Abstract
    Geologic evidence of tropical sea level glaciation in the Neoproterozoic remains a matter of debate in the Snowball Earth hypothesis. The Niari Tillite Formation and the cap carbonates record the late Neoproterozoic Marinoan glaciation in South Gabon. These cap carbonates are located at the base of the Schisto-Calcaire Subgroup a predominantly carbonate succession that rests with sharp contact on top of the Niari Tillite. Integrating sedimentological and stable isotope data, a consistent sequence of precipitation events is proposed, with strongly negative δ13C values pointing to a particular event in the cap carbonates (average δ13C value = −3.2‰ V-PDB) and in a further newly defined lithohermal unit (average δ13C value = −4.6‰ V-PDB). Subsequent shallow evaporitive platform carbonates display carbon and oxygen isotopic compositions indicative of relatively unaltered seawater values. Strongly negative δ18O values in the lithoherms and replacement of aragonite fans by equigranular calcite suggest flushing of meteoric water derived from glacial meltwater.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors