IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank
Dierssen, H.M.; Zimmerman, R.C.; Drake, L.A.; Burdige, D. (2010). Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank. Mar. Ecol. Prog. Ser. 411: 1-15. https://dx.doi.org/10.3354/meps08665
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Primary productivity · Remote sensing · Ocean color · Inherent optical properties · Benthic reflectance · Bahamas · Grapestone sediment

Authors  Top 
  • Dierssen, H.M., more
  • Zimmerman, R.C.
  • Drake, L.A.
  • Burdige, D.

Abstract
    Development of repeatable and quantitative tools are necessary for determining the abundance and distribution of different types of benthic habitats, detecting changes to these ecosystems, and determining their role in the global carbon cycle. Here we used ocean color remote sensing techniques to map different major groups of primary producers and estimate net primary productivity (NPP) across Great Bahama Bank (GBB). Field investigations on the northern portion of the GBB in 2004 revealed 3 dominant types of benthic primary producers: seagrass, benthic macroalgae, and microalgae attached to sediment. Laboratory measurements of NPP ranged from barely net autotrophic for grapestone sediment with thin microalgal biofilm to highly productive for dense accumulations of brown macroalgae. A logarithmic relationship between NPP and green seafloor reflectance described the general trend in NPP across various benthic constituents. Using a radiative transfer-based approach, satellite-derived estimates of NPP for the region totaled ~2 × 1013 gC yr–1 across the GBB. The prevailing benthic habitat was mapped as sediment with little to no microalgal biofilm. Moderate to dense seagrass meadows of Thalassia testudinum were the dominant primary producers and contributed over 80% of NPP in the region. If the vast majority of seagrass leaves decompose in the primarily carbonate sediments, carbonate dissolution processes associated with this decomposition may result in sequestration of seagrass above- and below-ground carbon into the bicarbonate pool (2.4 × 1013 gC yr–1), where it has a residence time on the order of tens of thousands of years.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors