IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Zonal similarity of long-term changes and seasonal cycles of baseline ozone at northern midlatitudes
Parrish, D.D.; Derwent, R.G.; Steinbrecht, W.; Stübi, R.; Van Malderen, R.; Steinbacher, M.; Trickl, T.; Ries, L.; Xu, X. (2020). Zonal similarity of long-term changes and seasonal cycles of baseline ozone at northern midlatitudes. JGR: Atmospheres 125(13): e2019JD031908. https://hdl.handle.net/10.1029/2019JD031908
In: Journal of Geophysical Research-Atmospheres. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-897X; e-ISSN 2169-8996, more
Peer reviewed article  

Available in  Authors 

Author keywords
    baseline ozone; long-term changes; seasonal cycle; zonal similarity; ozone maximum

Authors  Top 
  • Parrish, D.D.
  • Derwent, R.G.
  • Steinbrecht, W.
  • Stübi, R.
  • Van Malderen, R., more
  • Steinbacher, M.
  • Trickl, T.
  • Ries, L.
  • Xu, X.

Abstract
    The lifetime of ozone in the troposphere is approximately 3 weeks. Prevailing westerly winds at northern midlatitudes can transport air around the globe in that time. Hence, within these latitudes zonal similarity is expected in long-term changes and seasonal cycles of concentrations of baseline ozone. We quantify the degree of zonal similarity by examining eight in situ baseline ozone data sets near the west coasts of North America and Europe, that is, upwind of those continents and downwind of the Pacific and Atlantic Oceans, where the impacts of local and regional ozone sources have been largely mixed into the troposphere, giving the best-defined baseline ozone signature. Zonal similarity is found in both long-term changes and seasonal cycles. The decades-long increase in Northern Hemisphere, midlatitude baseline mixing ratios (average ~0.60 ppb year−1 from 1980–2000), has ended, with a maximum reached in the mid-2000s, followed by slow decrease (average = −0.09 ± 0.08 ppb year−1 from 2000 to the present). The year of the ozone maximum exhibits little if any statistically significant difference with location, altitude, or season. The ozone seasonal cycle differs markedly between sea-level coastal stations representative of the marine boundary layer and the free troposphere sampled at elevated sites and by sondes and aircraft. However, within each of these broad tropospheric layers, the seasonal cycles are similar at all locations. Vertical profiles of the parameters that define the long-term trends and the seasonal cycle are also similar between North America and Europe.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors