IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [338482]
A rooted phylogeny resolves early bacterial evolution
Coleman, G.A.; Davín, A.A.; Mahendrarajah, T.A.; Szánthó, L.L.; Spang, A.; Hugenholtz, P.; Szöllosi, G.J.; Williams, T.A. (2021). A rooted phylogeny resolves early bacterial evolution. Science (Wash.) 372(6542): eabe0511. https://doi.org/10.1126/science.abe0511

Additional data:
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075; e-ISSN 1095-9203, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Coleman, G.A.
  • Davín, A.A.
  • Mahendrarajah, T.A.
  • Szánthó, L.L.
  • Spang, A., more
  • Hugenholtz, P.
  • Szöllosi, G.J.
  • Williams, T.A.

Abstract
    A rooted bacterial tree is necessary to understand early evolution, but the position of the root is contested. Here, we model the evolution of 11,272 gene families to identify the root, extent of horizontal gene transfer (HGT), and the nature of the last bacterial common ancestor (LBCA). Our analyses root the tree between the major clades Terrabacteria and Gracilicutes and suggest that LBCA was a free-living flagellated, rod-shaped double-membraned organism. Contrary to recent proposals, our analyses reject a basal placement of the Candidate Phyla Radiation, which instead branches sister to Chloroflexota within Terrabacteria. While most gene families (92%) have evidence of HGT, overall, two-thirds of gene transmissions have been vertical, suggesting that a rooted tree provides a meaningful frame of reference for interpreting bacterial evolution.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors