IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Three years of measurements of light-absorbing aerosols over coastal Namibia: seasonality, origin, and transport
Formenti, P.; Piketh, S.J.; Namwoonde, A.; Klopper, D.; Burger, R.; Cazaunau, M.; Feron, A.; Gaimoz, C.; Broccardo, S.; Walton, N.; Desboeufs, K.; Siour, G.; Hanghome, M.; Mafwila, S.; Omoregie, E.; Junkermann, W.; Maenhaut, W. (2018). Three years of measurements of light-absorbing aerosols over coastal Namibia: seasonality, origin, and transport. Atmos. Chem. Phys. 18(23): 17003-17016. https://dx.doi.org/10.5194/acp-18-17003-2018
In: Atmospheric Chemistry and Physics. Copernicus Publ: Göttingen. ISSN 1680-7316; e-ISSN 1680-7324, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Formenti, P.
  • Piketh, S.J.
  • Namwoonde, A.
  • Klopper, D.
  • Burger, R.
  • Cazaunau, M.
  • Feron, A.
  • Gaimoz, C.
  • Broccardo, S.
  • Walton, N.
  • Desboeufs, K.
  • Siour, G.
  • Hanghome, M.
  • Mafwila, S.
  • Omoregie, E.
  • Junkermann, W.
  • Maenhaut, W., more

Abstract
    Continuous measurements between July 2012 and December 2015 at the Henties Bay Aerosol Observatory (HBAO; 22 S, 1405 E), Namibia, show that, during the austral wintertime, transport of light-absorbing black carbon aerosols occurs at low level into the marine boundary layer. The average of daily concentrations of equivalent black carbon (eBC) over the whole sampling period is 53 (±55) ng m−3. Peak values above 200 ng m−3 and up to 800 ng m−3 occur seasonally from May to August, ahead of the dry season peak of biomass burning in southern Africa (August to October). Analysis of 3-day air mass back-trajectories show that air masses from the South Atlantic Ocean south of Henties Bay are generally cleaner than air having originated over the ocean north of Henties Bay, influenced by the outflow of the major biomass burning plume, and from the continent, where wildfires occur. Additional episodic peak concentrations, even for oceanic transport, indicate that pollution from distant sources in South Africa and maritime traffic along the Atlantic ship tracks could be important. While we expect the direct radiative effect to be negligible, the indirect effect on the microphysical properties of the stratocumulus clouds and the deposition to the ocean could be significant and deserve further investigation, specifically ahead of the dry season.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors