IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption types and deposits
Colombier, M.; Mueller, S.B.; Kueppers, U.; Scheu, B.; Delmelle, P.; Cimarelli, C.; Cronin, S.J.; Brown, R.J.; Tost, M.; Dingwell, D.B. (2019). Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption types and deposits. Bulletin of Volcanology 81(7): 39. https://dx.doi.org/10.1007/s00445-019-1302-0
In: Bulletin of Volcanology. Springer: Berlin. ISSN 0258-8900; e-ISSN 1432-0819, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Ash aggregates; Leaching; Salt precipitation; Particle binding; Plumedispersal

Authors  Top 
  • Colombier, M.
  • Mueller, S.B.
  • Kueppers, U.
  • Scheu, B.
  • Delmelle, P., more
  • Cimarelli, C.
  • Cronin, S.J.
  • Brown, R.J.
  • Tost, M.
  • Dingwell, D.B.

Abstract
    Ash aggregation is a common phenomenon in particle-laden environments of volcanic eruption plumes and pyroclastic density currents. Many of these initially fragile aggregates gain sufficient mechanical strength to remain intact after atmospheric transport and deposition. Several processes contribute to ash aggregate stability, including electrostatic and hydrostatic bonding, ice formation, and cementation by salt precipitates. Here, we compare leachate chemistry from aggregates from a variety of eruption and sedimentation conditions, ranging from dry magmatic eruptions with immediate deposition, to eruptions through seawater. The leachate data shows that the broad window of opportunity for aggregation and aggregate break-up may be used to qualitatively constrain suspended ash concentration and its temporal evolution. We show that aggregation rate and aggregate stability largely depend on the availability of external water and salt source. In particular, high humidity and extensive salt precipitation in seawater environments, such as during the Surtseyan eruptions, promote high aggregation rates and aggregate stability, with accordingly accentuated proximal deposition and aggregate concentration in the deposits. On the other hand, low humidity and salt concentrations during dry magmatic eruptions promote less aggregation and more efficient aggregate break-up, explaining the rarity of aggregates in the deposits. These results have strong implications for the ash budget in volcanic plumes and associated models of plume dispersal and related hazards.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors