IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Cave meiofauna - Models for ecology and evolution
Martínez, A. (2023). Cave meiofauna - Models for ecology and evolution, in: Giere, O. et al. New horizons in meiobenthos research. pp. 329-361. https://dx.doi.org/10.1007/978-3-031-21622-0_10
In: Giere, O.; Schratzberger, M. (Ed.) (2023). New horizons in meiobenthos research. Springer: Cham. ISBN 978-3-031-21621-3; e-ISBN 978-3-031-21622-0. XII, 407 pp. https://dx.doi.org/10.1007/978-3-031-21622-0, more

Available in  Author 

Author  Top 
  • Martínez, A.

Abstract
    Caves can be used as model systems for developing and understanding evolutionary and ecological theory. Yet, most scientists have paid little attention to cave meiofaunal communities, thereby potentially underestimating subterranean biodiversity. To date, meiofauna has been recorded in only 2026 caves, totalling 31% of caves for which information on aquatic fauna is available around the world. However, these records primarily originate from Europe and the Western Mediterranean and focus on target species, rather than on describing entire communities. Of the 1856 meiofaunal species recorded in caves, 699 might be regarded as restricted to subterranean habitats. Most of those species belong to Arthropoda, with Copepoda the richest species group, both in terms of the number of species recorded and the number of taxa restricted to the subterranean world. Different models have been proposed to explain the origin of meiofaunal cave lineages, but testing them is hampered by the lack of phylogenetic information for most taxa. Although the current lack of diversity data renders studies at a community level challenging, studies to date suggest that cave meiofauna might play a central role in carbon cycling and crucially affect the composition of the groundwater in inland and coastal aquifers. The fundamental ecosystem services that aquifers provide and the pivotal role groundwater discharge attains in the chemical balance of the ocean offer new horizons for future research on cave meiofauna. Cave meiofauna might affect our everyday life much more than we have so far imagined.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author