IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Applicability of the gape monitor to study flat oyster (Ostrea edulis) feeding behaviour
Tonk, Linda; Witbaard, R.; van Dalen, P.; Cheng, C.; Kamermans, P. (2023). Applicability of the gape monitor to study flat oyster (Ostrea edulis) feeding behaviour. Aquat. Living Resour. 36: 6. https://dx.doi.org/10.1051/alr/2022021
In: Aquatic living resources: ressources vivantes aquatiques: Paris. ISSN 0990-7740, more

Available in  Authors 

Keywords
    Ostrea edulis Linnaeus, 1758 [WoRMS]
    Marine/Coastal
Author keywords
    Ostrea edulis; oyster reef restoration; North Sea; valve gape monitor; Voordelta

Authors  Top 
  • Tonk, Linda
  • Witbaard, R., more
  • van Dalen, P.

Abstract
    Innovative techniques are needed to assess oyster performance in flat oyster reef restoration projects. A valve gape monitor, a device that continuously measures opening and closing of live bivalves, can potentially be used as an effective method to determine survival and behaviour of the European flat oyster Ostrea edulis. The method has been successfully used in combination with a number of bivalve species to investigate valve gape activity in response to environmental factors. In this study, eight O. edulis were equipped with valve gape sensors in order to relate gape to environmental conditions such as food availability. Valve gape activity was monitored under controlled laboratory conditions, with and without food, in a concrete basin in the Oosterschelde and in the field (Voordelta, Dutch North Sea). Under controlled laboratory conditions, oysters clearly responded to changes in food availability. Starved oysters closed their valves significantly longer than oysters that received food, and the relative gape width in fed oysters was larger. In the concrete basin (Oosterschelde), a positive correlation between valve opening and Chlorophyll-a was found. Additionally, valve gape activity and tidal movement appeared to be linked. When exposed to a full tidal cycle (Voordelta), a negative correlation between valve opening and Chlorophyll-a was found. However, there was no correlation between valve gape and current velocity. In autumn, longer periods of inactivity were seen, but when valves opened, the valve gape was larger. These data indicate that valve gape can provide valuable information on behaviour (gape frequency and gape width), but also show that it is not necessarily a good proxy for feeding rate. Nevertheless, these results show that the gape monitor can be used to determine the natural behaviour of flat oysters under field conditions, and that gape opening provides information on behaviour and the stress response of bivalves to environmental conditions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors