[ report an error in this record ]basket (0): add | show Print this page

Cycling of nutrient elements in the North Sea
Brockmann, U.H.; Laane, R.W.P.M.; Postma, H. (1990). Cycling of nutrient elements in the North Sea. Neth. J. Sea Res. 26(2-4): 239-264
In: Netherlands Journal of Sea Research. Netherlands Institute for Sea Research (NIOZ): Groningen; Den Burg. ISSN 0077-7579; e-ISSN 1873-1406, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Brockmann, U.H.
  • Laane, R.W.P.M., more
  • Postma, H.

    The cycling of elements of inorganic and organic nutrients (carbon, nitrogen, phosphorus and silicate) in the North Sea is described. The regional effects on nutrient cycling such as thermal and haline stratification, coastal interaction, river discharges, upwelling and frontal zones are discussed. The horizontal and vertical distribution of the inorganic nutrients (nitrate, phosphate, ammonia and silicate) at the surface is given for the whole North Sea during two situations: spring (1986) and winter (1987). In winter, highest nutrient concentrations were found at the northern boundary in the Atlantic inflow, and in the continental coastal waters. During the winter cruise, nutrient minima were detected in the Dogger Bank area. This is an indication that primary production continues during winter. Generally, the surface concentrations during winter were similar to the bottom concentrations. Except tor phosphate, highest concentrations were measured just above the bottom. During late spring 1986 the concentrations of nutrients at the surface and below the densicline were generally significantly lower than during winter. Only at the Atlantic boundary in the north and near the estuaries higher concentrations were detected. In stratified parts of the North Sea, the decomposition of sedimented biomass caused the ammonia concentrations in the bottom layer to be significantly higher in spring than in winter. Incidents of frontal upwelling in the central North Sea introduce nutrient-rich bottom water into the euphotic zone, enhancing phytoplankton growth in the central North Sea during summer. The ratios of nitrogen nutrients to phosphate show that in the central North Sea nitrogen is a limiting factor rather than phosphorus, whereas in the continental coastal water and off England the opposite is true. Riverine input and trapping mechanisms in the estuaries and tidal flats cause the concentrations of organic matter (dissolved and particulate) to be highest in the coastal zones and to decrease seaward. During summer the concentration of dissolved organic carbon increases throughout the North Sea. It is calculated that about 60% of the biomass formed by primary production is converted into dissolved organic carbon, 40% directly goes into the foodweb. The biological impact of the plankton is readily apparent from increased surface concentrations of different dissolved organic substances during spring blooms. Examples of eutrophication and effects of nutrient limitation are given, together with other biological repercussions such as coupling of phytoplankton and nutrient succession. Budget calculations for the different nutrient elements show that in the North Sea the biological turnover greatly exceeds the estimated annual inflow and outflow of nutrient elements. Finally, recommendations are given for future research. They include analysing dissolved organic compounds and micronutrients and following multidisciplinary measurements strategies at one location in order to obtain more information for balancing budgets and for the detailed analysis of nutrient cycling in the North Sea.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors