IMIS | Lifewatch regional portal

You are here


[ report an error in this record ]basket (0): add | show Print this page

Sound production mechanism in carapid fish: first example with a slow sonic muscle
Parmentier, E.; Lagardère, J.-P.; Braquegnier, J.-B.; Vandewalle, P.; Fine, M.L. (2006). Sound production mechanism in carapid fish: first example with a slow sonic muscle. J. Exp. Biol. 209(15): 2952-2960.
In: Journal of Experimental Biology. Cambridge University Press: London. ISSN 0022-0949; e-ISSN 1477-9145, more
Peer reviewed article  

Available in  Authors 

    Carapidae Poey, 1867 [WoRMS]
Author keywords
    Carapidae; sound production; sonic muscle; sonic mechanism; swimbladder

Authors  Top 
  • Parmentier, E., more
  • Lagardère, J.-P., more
  • Braquegnier, J.-B.
  • Vandewalle, P., more
  • Fine, M.L.

    Fish sonic swimbladder muscles are the fastest muscles in vertebrates and have fibers with numerous biochemical and structural adaptations for speed. Carapid fishes produce sounds with a complex swimbladder mechanism, including skeletal components and extrinsic sonic muscle fibers with an exceptional helical myofibrillar structure. To study this system we stimulated the sonic muscles, described their insertion and action and generated sounds by slowly pulling the sonic muscles. We find the sonic muscles contract slowly, pulling the anterior bladder and thereby stretching a thin fenestra. Sound is generated when the tension trips a release system that causes the fenestra to snap back to its resting position. The sound frequency does not correspond to the calculated resonant frequency of the bladder, and we hypothesize that it is determined by the snapping fenestra interacting with an overlying bony swimbladder plate. To our knowledge this tension release mechanism is unique in animal sound generation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors