IMIS | Lifewatch regional portal

You are here


[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [256932]
Quantification and profiling of lipophilic marine toxins in microalgae by UHPLC coupled to high-resolution orbitrap mass spectrometry
Orellana, G.; Van Meulebroek, L.; Van Vooren, S.; De Rijcke, M.; Vandegehuchte, M.; Janssen, C.R.; Vanhaecke, L. (2015). Quantification and profiling of lipophilic marine toxins in microalgae by UHPLC coupled to high-resolution orbitrap mass spectrometry. Anal. Bioanal. Chem. 407(21): 6345-6356.
In: Analytical and Bioanalytical Chemistry. Springer: Heidelberg. ISSN 1618-2642; e-ISSN 1618-2650, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Ultra-high-performance liquid chromatography high-resolution Orbitrapmass spectrometry; Plackett-Burman; Validation; Harmful algae;Yessotoxins; Spirolide

Authors  Top 
  • Orellana, G., more
  • Van Meulebroek, L., more
  • Van Vooren, S., more
  • De Rijcke, M., more
  • Vandegehuchte, M., more
  • Janssen, C.R., more
  • Vanhaecke, L., more

    During the last decade, a significant increase in the occurrence of harmful algal blooms (HABs), linked to repetitive cases of shellfish contamination has become a public health concern and therefore, accurate methods to detect marine toxins in different matrices are required. In this study, we developed a method for profiling lipophilic marine microalgal toxins based on ultra-high-performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry (UHPLC-HR-Orbitrap MS). Extraction of selected toxins (okadaic acid (OA), dinophysistoxin-1 (DTX-1), pectenotoxin-2 (PTX-2), azaspiracid-1 (AZA-1), yessotoxin (YTX) and 13-desmethyl spirolide C (SPX-1)) was optimized using a Plackett-Burman design. Three key algal species, i.e., Prorocentrum lima, Protoceratium reticulatum and Alexandrium ostenfeldii were used to test the extraction efficiency of OA, YTXs and SPXs, respectively. Prorocentrum micans, fortified with certified reference solutions, was used for recovery studies. The quantitative and confirmatory performance of the method was evaluated according to CD 2002/657/EC. Limits of detection and quantification ranged between 0.006 and 0.050 ng mL-1 and 0.018 to 0.227 ng mL-1, respectively. The intra-laboratory reproducibility ranged from 6.8 to 11.7 %, repeatability from 6.41 to 11.5 % and mean corrected recoveries from 81.9 to 119.6 %. In addition, algae cultures were retrospectively screened for analogues and metabolites through a homemade database. Using the ToxID software programme, 18 toxin derivates were detected in the extract of three toxin producing microalgae species. In conclusion, the generic extraction and full-scan HRMS approach offers an excellent quantitative performance and simultaneously allows to profile analogues and metabolites of marine toxins in microalgae.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors