IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords
Holding, J.M.; Duarte, C.M.; Delgado-Huertas, A.; Soetaert, K.; Vonk, J.E.; Agusti, S.; Wassmann, P.; Middelburg, J. (2017). Autochthonous and allochthonous contributions of organic carbon to microbial food webs in Svalbard fjords. Limnol. Oceanogr. 62(3): 1307-1323. https://dx.doi.org/10.1002/lno.10526
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc. ISSN 0024-3590; e-ISSN 1939-5590, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Holding, J.M.
  • Duarte, C.M.
  • Delgado-Huertas, A.
  • Soetaert, K., more
  • Vonk, J.E.
  • Agusti, S.
  • Wassmann, P.
  • Middelburg, J., more

Abstract
    Rising temperatures in the Arctic Ocean are causing sea ice and glaciers to melt at record breaking rates, which has consequences for carbon cycling in the Arctic Ocean that are yet to be fully understood. Microbial carbon cycling is driven by internal processing of in situ produced organic carbon (OC), however recent research suggests that melt water from sea ice and glaciers could introduce an allochthonous source of OC to the microbial food web with ramifications for the metabolic balance of plankton communities. In this study, we characterized autochthonous and allochthonous sources of OC to the Western Svalbard fjord system using stable isotopes of carbon. We quantified δ13C of eukaryotic and prokaryotic planktonic groups using polar lipid-derived fatty acids as biomarkers in addition to measuring δ13C of marine particulate OC and dissolved OC from glacial runoff. δ13C of bacteria (−22.5‰) was higher than that of glacial runoff OC (−28.5‰) and other phytoplankton groups (−24.7 to −29.1‰), which suggests that marine bacteria preferentially use a third source of OC. We present a Bayesian three-source δ13C mixing model whereby ∼ 60% of bacteria carbon is derived from OC in sea ice, and the remaining carbon is derived from autochthonous production and glacial-derived OC. These results suggest that subsidies of OC from melting glaciers will not likely influence microbial carbon cycling in Svalbard fjords in the future and that further research is needed to determine the effects of melting sea ice on microbial carbon cycling in fjord systems and elsewhere in the Arctic Ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors