[ report an error in this record ]basket (0): add | show Print this page

Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting
Maselli, V.; Iacopini, D.; Ebinger, C.J.; Tewari, S.; de Haas, H.; Wade, B.S.; Pearson, P.N.; Francis, M.; van Vliet, A.; Richards, B.; Kroon, D. (2020). Large-scale mass wasting in the western Indian Ocean constrains onset of East African rifting. Nature Comm. 11(1): 3456. https://dx.doi.org/10.1038/s41467-020-17267-5
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Maselli, V.
  • Iacopini, D.
  • Ebinger, C.J.
  • Tewari, S.
  • de Haas, H., more
  • Wade, B.S.
  • Pearson, P.N.
  • Francis, M.
  • van Vliet, A.
  • Richards, B.
  • Kroon, D.

    Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors