IMIS | Lifewatch regional portal

You are here


[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [329617]
Mercury uptake affects the development of Larus fuscus chicks
Santos, C.; Sotillo, A.; Gupta, T.; Delgado, S.; Müller, W.; Stienen, E.W.M.; De Neve, L.; Lens, L.; Soares, A.M.V.M; Monteiro, M.S.; Loureiro, S. (2020). Mercury uptake affects the development of Larus fuscus chicks. Environ. Toxicol. Chem. 39(10): 2008-2017.
In: Environmental Toxicology and Chemistry. Setac Press: New York. ISSN 0730-7268; e-ISSN 1552-8618, more
Peer reviewed article  

Available in  Authors 

    Biological phenomena > Accumulation > Bioaccumulation
    Birds (marine)
    Larus fuscus Linnaeus, 1758 [WoRMS]
Author keywords
    Body condition, Dietary uptake, Metal accumulation

Authors  Top 
  • Santos, C., more
  • Sotillo, A., more
  • Gupta, T., more
  • Delgado, S.
  • Soares, A.M.V.M
  • Monteiro, M.S.
  • Loureiro, S.

    Current emission and mobilization rates of mercury (Hg) in the environment pose extensive threats to both wildlife and human health. Assessing the exposure risk and effects of Hg contamination in model species such as seabirds is essential to understand Hg risks at the population and ecosystem levels. The lesser black‐backed gull (Larus fuscus), a generalist seabird species, is an excellent model species because it forages in both marine and terrestrial habitats, which in turn differ in their Hg exposure risk. To identify possible deleterious effects of Hg exposure on developing L. fuscus chicks, a dietary experiment was carried out and chicks were provided a marine, terrestrial, or mixed diet. The effects of embryonic and dietary Hg exposure on chick body condition and physiological state were assessed at different developmental stages until fledging age (30 d). Overall physiological condition was lower in chicks fed a predominantly marine diet, which coincided with higher Hg loads in blood and primary feathers. However, no effect of dietary uptake of Hg was observed on body condition or in terms of genotoxic damage. Body condition and genotoxic damage correlated instead with Hg exposure during embryonic development, which seems to indicate that embryonic exposure to Hg may result in carry‐over effects on later chick development.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors