IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO‐utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class ‘Natranaerobiia’
Sorokin, D.Y.; Diender, M.; Merkel, A.Y.; Koenen, M.; Bale, N.J.; Pabst, M.; Sinninghe Damsté, J.S.; Sousa, D.Z. (2021). Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO‐utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class ‘Natranaerobiia’. Environ. Microbiol. 23(7): 3460-3476. https://doi.org/10.1111/1462-2920.15241
In: Environmental Microbiology. Blackwell Scientific Publishers: Oxford. ISSN 1462-2912; e-ISSN 1462-2920, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Sorokin, D.Y.
  • Diender, M.
  • Merkel, A.Y.
  • Koenen, M., more
  • Bale, N.J., more
  • Pabst, M.
  • Sinninghe Damsté, J.S., more
  • Sousa, D.Z.

Abstract
    An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane-forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep-branching phylogenetic lineage at the level of a new family within the class ‘Natranaerobiia’. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood–Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr-like operon. The organism obviously relies on Na-based bioenergetics, since the genome encodes for the Na+-Rnf complex, Na+-F1F0 ATPase and Na+-translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO-oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors