IMIS | Lifewatch regional portal

You are here


[ report an error in this record ]basket (0): add | show Print this page

Seasonal hydrography of Ameralik: a southwest Greenland fjord impacted by a land‐terminating glacier
Stuart-Lee, A.E.; Mortensen, J.; van der Kaaden, A.-S.; Meire, L. (2021). Seasonal hydrography of Ameralik: a southwest Greenland fjord impacted by a land‐terminating glacier. JGR: Oceans 126(12): e2021JC017552.

Additional data:
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Stuart-Lee, A.E., more
  • Mortensen, J.
  • van der Kaaden, A.-S.
  • Meire, L., more

    Greenland’s coastal zone encompasses a large number of fjords, many of which are impacted by glacial meltwater runoff from land-terminating glaciers. This type of fjord has received limited research attention, yet may represent the future of other fjords currently impacted by marine-terminating glaciers that are retreating. In this study we describe the seasonal hydrography of Ameralik, a fjord on the southwest coast of Greenland impacted by a land-terminating glacier. To complement this analysis we compare our results with observations from the neighbouring Godthåbsfjord, which receives meltwater from both land- and marine-terminating glaciers. We find that the absence of subglacial discharge and glacial ice in Ameralik has a strong impact on the inner fjord density profiles and on circulation. The mean temperature of the upper 50 m layer was lower in Ameralik than Godthåbsfjord in May, but by September was 2C higher in Ameralik. Dense coastal inflows occur in the late winter months in Ameralik, flushing the fjord and contributing to the return to a weakly stratified state. During the runoff period the surface waters are subject to estuarine circulation and wind forcing, while at intermediate depths a density gradient between the inner and outer fjord regions produces an intermediate baroclinic circulation, resulting in the exchange of water in this layer and the deepening of isopycnals. During summer a large fraction of the meltwater runoff is retained within the fjord rather than being exported. A substantial export of this summer accumulated freshwater occurs in connection with coastal inflows during winter.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors