IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Implications of coastal conditions and sea-level rise on mangrove vulnerability: a bio-morphodynamic modeling study
Xie, D.; Schwarz, C.; Kleinhans, M.G.; Zhou, Z.; van Maanen, B. (2022). Implications of coastal conditions and sea-level rise on mangrove vulnerability: a bio-morphodynamic modeling study. JGR: Earth Surface 127(3): e2021JF006301. https://dx.doi.org/10.1029/2021JF006301
In: Journal of Geophysical Research-Earth Surface. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9003; e-ISSN 2169-9011, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    mangroves; sea-level rise; bio-morphodynamic feedbacks; coastal conditions; accommodation space; numerical modeling

Authors  Top 
  • Xie, D.
  • Schwarz, C., more
  • Kleinhans, M.G., more
  • Zhou, Z., more
  • van Maanen, B.

Abstract
    Mangrove forests are valuable coastal ecosystems that have been shown to persist on muddy intertidal flats through bio-morphodynamic feedbacks. However, the role of coastal conditions on mangrove behavior remains uncertain. This study conducts numerical experiments to systematically explore the effects of tidal range, small wind waves, sediment supply and coastal slope on mangrove development under sea-level rise (SLR). Our results show that mangroves in micro-tidal conditions are more vulnerable because of the gentler coastal equilibrium slope and the limited ability to capture sediment, which leads to substantial mangrove landward displacement even under slow SLR. Macro-tidal conditions with large sediment supply promote accretion along the profile and platform formation, reducing mangrove vulnerability for slow and medium SLR, but still cause rapid mangrove retreat under fast SLR. Small wind waves promote sediment accretion, and exert an extra bed shear stress that confines the mangrove forest to higher elevations with more favorable inundation regimes, offsetting SLR impacts. These processes also have important implications for the development of new landward habitats under SLR. In particular, our experiments show that landward habitat can be created even with limited sediment supply and thus without complete infilling of the available accommodation space. Nevertheless, new accommodation space may be filled over time with sediment originating from erosion of the lower coastal profile. Consistent with field data, model simulations indicate that sediment accretion within the forest can accelerate under SLR, but the timing and magnitude of accretion depend non-linearly on coastal conditions and distance from the mangrove seaward edge.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors