IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Comparative visual and DNA-based diet assessment extends the prey spectrum of polar cod Boreogadus saida
Maes, S.M.; Schaafsma, F.L.; Christiansen, H.; Hellemans, B.; Lucassen, M.; Mark, F.C.; Flores, H.; Volckaert, F.A.M. (2022). Comparative visual and DNA-based diet assessment extends the prey spectrum of polar cod Boreogadus saida. Mar. Ecol. Prog. Ser. 698: 139-154. https://dx.doi.org/10.3354/meps14145
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Keywords
Author keywords
    DNA metabarcoding, Borealisation, Arctic ecosystem, Arctic cod, Prey composition, Barents Sea, Stomach contents, Trophic ecology

Authors  Top 
  • Maes, S.M., more
  • Schaafsma, F.L.
  • Christiansen, H., more
  • Hellemans, B., more
  • Lucassen, M.
  • Mark, F.C.
  • Flores, H., more
  • Volckaert, F.A.M., more

Abstract
    The Arctic marine ecosystem is changing fast due to climate change, emphasizing the need for solid ecological baselines and monitoring. The polar cod Boreogadus saida functions as a key species in the Arctic marine food web. We investigated the stomach contents of polar cod from the northern Barents Sea using DNA metabarcoding with the mitochondrial cytochrome c oxidase I gene in parallel with classical visual analysis. Arctic amphipods and krill dominated the diet in both methods. Yet, metabarcoding allowed for the identification of digested and unidentifiable prey and provided higher taxonomic resolution, revealing new and undiscovered prey items of polar cod in the area. Furthermore, molecular results suggest a higher importance of barnacles and fish (presumably eggs and pelagic larvae) in the diet than previously recorded. Parasites and, in 6 cases, other prey items were only visually identified, demonstrating the complementary nature of both approaches. The presence of temperate and boreal prey species such as northern krill and (early life stages of) European flounder and European plaice illustrates the advection of boreal taxa into the polar region or may be indicative of ongoing borealisation in the Barents Sea. We show that a combination of visual analysis and metabarcoding provides complementary and semi-quantitative dietary information and integrative insights to monitor changing marine food webs.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors