IMIS | Lifewatch regional portal

You are here

IMIS

[ report an error in this record ]basket (0): add | show Print this page

Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform
Taramelli, A.; Valentini, E.; Cornacchia, L.; Monbaliu, J.; Sabbe, K. (2018). Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform. JGR: Earth Surface 123(10): 2714-2731. https://dx.doi.org/10.1029/2017jf004540

Additional data:
In: Journal of Geophysical Research-Earth Surface. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9003; e-ISSN 2169-9011, more
Peer reviewed article  

Available in  Authors | Dataset 

Author keywords
    salt marsh; vegetation; channel sinuosity; power laws; SMA

Authors  Top | Dataset 
  • Taramelli, A., more
  • Valentini, E., more
  • Cornacchia, L., more

Abstract
    Salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between vegetation development and channel formation play an important role. We examined the relationships among tidal channel sinuosity, marsh elevation and roughness, vegetation type (pioneer, Elymus athericus or Phragmites australis) and patch size at different spatial scales using a high‐resolution vegetation map (derived from aerial photography) and lower‐resolution satellite imagery processed with linear spectral mixture analysis (LSMA). The patch size distribution in all vegetation types corresponded to a power law, suggesting the presence of self‐organizational processes. While small vegetation patches are more dominant in pioneer vegetation, they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation types. The fact that this relationship is observed in both pioneer and later successional stages suggests that after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development, the later stages of salt marsh succession largely inherit the meandering pattern of the early successional stages. Our study confirms recent evidence that no significant changes in the specific features of tidal channel networks (e.g., channel width, drainage density and efficiency) take place during the later stages of salt marsh development.

Dataset
  • Data from the study: Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform, more

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors | Dataset